Convergence of LR algorithm for a one-point spectrum tridiagonal matrix

نویسندگان

  • Carla Ferreira
  • Beresford N. Parlett
چکیده

We prove convergence for the basic LR algorithm on a real unreduced tridiagonal matrix with a one-point spectrum the Jordan form is one big Jordan block. First we develop properties of eigenvector matrices. We also show how to deal with the singular case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

A more accurate algorithm for computing the Christoffel transformation ?

A monic Jacobi matrix is a tridiagonal matrix which contains the parameters of the three-term recurrence relation satisfied by the sequence of monic polynomials orthogonal with respect to a measure. The basic Christoffel transformation with shift α transforms the monic Jacobi matrix associated with a measure dμ into the monic Jacobi matrix associated with (x − α)dμ. This transformation is known...

متن کامل

A Comprehensive Study of Several Meta-Heuristic Algorithms for Open-Pit Mine Production Scheduling Problem Considering Grade Uncertainty

It is significant to discover a global optimization in the problems dealing with large dimensional scales to increase the quality of decision-making in the mining operation. It has been broadly confirmed that the long-term production scheduling (LTPS) problem performs a main role in mining projects to develop the performance regarding the obtainability of constraints, while maximizing the whole...

متن کامل

Matrix representation of a sixth order Sturm-Liouville problem and related inverse problem with finite spectrum

‎In this paper‎, ‎we find matrix representation of a class of sixth order Sturm-Liouville problem (SLP) with separated‎, ‎self-adjoint boundary conditions and we show that such SLP have finite spectrum‎. ‎Also for a given matrix eigenvalue problem $HX=lambda VX$‎, ‎where $H$ is a block tridiagonal matrix and $V$ is a block diagonal matrix‎, ‎we find a sixth order boundary value problem of Atkin...

متن کامل

Convergence Properties of Hermitian and Skew Hermitian Splitting Methods

In this paper we consider the solutions of linear systems of saddle point problems‎. ‎By using the spectrum of a quadratic matrix polynomial‎, ‎we study the eigenvalues of the iterative matrix of the Hermitian and skew Hermitian splitting method‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 113  شماره 

صفحات  -

تاریخ انتشار 2009